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Abstract: to characterize the properties of random variables in probability
theory, the concept of the probability distribution law of a random variable is used. The
probability distribution law provides complete information about the properties of a
random variable and allows one to obtain the probabilistic value of the measured
quantity and the characteristics of the random error. The main characteristics of the
probability distribution laws of random variables are the integral and differential
distribution functions and the numerical characteristics of the position, dispersion,
asymmetry and excess of probability distributions.
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Introduction. The results of measurements of quantities and the errors in their
determination are random variables. This circumstance predetermines the use of
methods of probability theory and mathematical statistics to find quantitative estimates
of the measurement result and its error.

To characterize the properties of random variables in probability theory, the
concept of the probability distribution law of a random variable is used. The probability
distribution law provides complete information about the properties of a random
variable and allows one to obtain the probabilistic value of the measured quantity and
the characteristics of the random error.

Main Part. The main characteristics of the probability distribution laws of random
variables are the cumulative and differential distribution functions and the numerical
characteristics of the position, dispersion, asymmetry, and kurtosis of probability
distributions.

The cumulative distribution function F(x) of a random variable x represents the
dependence of the probability that the result of observation xi in the i-th experiment
will be less than some current value x on the variable x itself:
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F(X) = P{xi <x} = P{-0 < x; <X}, (1)

where: P is the probability of the event described in curly brackets.
The differential distribution function, otherwise known as the probability density
function p(x) of a random variable, is equal to the derivative of the cumulative
distribution function:
p(x) = d F(x)/dx. (2)

Thus, the integral and differential distribution functions are also related to each
other by the following expression:

F(x) = )Icp(X)- dx , 3)

— 0

The formation of a differential distribution function can be illustrated by the
example of measurements with multiple observations. Let's say n consecutive
measurements of the same quantity X are made, and a group of results from these
measurements x1, x2, X3, ... xn is obtained. All these results are random numbers, since
each contains some random error.

Initially, the observation results are arranged in ascending order from xmin to
xmax, and the range of the resulting series is found.
L = Xmax = Xmin

By dividing the series range into k equal intervals Al = L / k, the number of
observations nk falling within each interval is calculated. The obtained results are
represented graphically, with the values of the quantity plotted on the abscissa and the
interval boundaries indicated, and the relative frequency of observations falling within
each interval — nk/n — plotted on the ordinate.

By plotting a rectangle on the diagram, the base of which is the interval width and
the height of which is the frequency nk/n, we obtain a so-called histogram, a figure that
provides a visual representation of the distribution density of observations in a given
experiment.

Figure 1 shows a histogram obtained in one of the experiments and constructed
based on the results of 50 observations grouped in Table 1. In the given example, 0.1;
0.2; 0.36; 0.22, and 0.12 of the total number of observations fall into the first and
subsequent intervals, respectively. Moreover, from the very principle of determining
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the relative frequency of observation results falling within each interval, it clearly
follows that the sum of all these numbers is equal to one.

If the distribution of the values of a random variable x is statistically stable, then
we can expect that with repeated series of observations of the same value and under the
same conditions, the relative frequencies of occurrences within each interval will be
close to the original values. This means that by constructing a histogram once, we can,
with a certain degree of certainty, predict the distribution of observation results across
intervals in subsequent series of observations.

Nw/ N Table 3.1. Initial data for
—0,4 constructing a histogram
~10,3 Inter N n/n
| val k k
0,2 number
1 5 0,1
> 2 10 0,2
01+—016,26:360:220,12 X 3 18 0,36
Al
L 4 11 0,22
5 6 0,12
Fig. 1. Histogram

Taking the total area limited by the histogram contour and the abscissa axis as a
unit (SO = 1), the relative frequency of occurrence (nk/n) of observation results in a
given interval can be determined as the ratio of the area of the corresponding rectangle
of width Al to the total area.
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nk/n 4 With an infinite increase in the number
of observations n — o« and an infinite
04 - 1 decrease in the interval width Al — 0, the
step curve enveloping the histogram will
0,3 transform into a smooth curve p(x) (Fig.
2), called the probability density curve of
0,2 — {L the random variable, and the equation
describing it is called the differential
0,1 — distribution law. The probability density
curve is always non-negative and the
Al area bounded by the curve and the

L abscissa axis is equal to one..

Fig. 2. Probability distribution density curve

-

The value of the integral distribution function for x — - oo is equal to zero, and
for x — oo it is equal to one, i.e.

Hence

F(-©)=0, F(+ ©)=1.

P{—oc < X < +oo}= jp (x)dx =1,

P a
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Fig. 3 Distribution of a discrete random variable
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The probability of an observation result or a random error falling within a given
interval [x1; x2] is equal to the difference in the values of the integral distribution
function at the boundaries of this interval

P{x1<x£x2}:F(xz)—F(xl):Tp(x)-dx. (4)

Graphically, this probability is expressed as the ratio of the area lying under the
curve p(x) in the interval from x1 to x2 to the total area bounded by the distribution
curve.

In addition to continuous random variables, discrete random variables are also
encountered in metrological practice. An example of the distribution of a discrete
random variable is shown in Figure 3.

Conclusion. As a result of our theoretical analyses, we found that the main
characteristics of the probability distribution laws of random variables are the integral
and differential distribution functions and the numerical characteristics of the position,
dispersion, skewness, and kurtosis of probability distributions.
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