O‘TKIR LIMFOBLASTIK LEYKOZDA TIMUSNING INVOLYUTSIYASI VA LEYKEMIK INFILTRATSIYANING PET/CT VA MRI BILAN BAHOLANISHI (KLINIK-MORFOLOGIK KORRELYATSIYA)
Keywords:
Kalit so’zlar: o‘tkir limfoblastik leykoz, T-ALL, timus involyutsiyasi, leykemik infiltratsiya, 18F-FDG PET/CT, diffuzion-vaznli MRI, ADC, prognostik biomarker, minimal qoldiq kasallikAbstract
Maqsad: O‘tkir limfoblastik leykoz (O‘LL), xususan T-hujayrali variantda (T-ALL) timusning involyutsiya darajasi va leykemik infiltratsiyani 18F-FDG PET/CT va diffuzion-vaznli MRI yordamida baholash, ularni gistopatologik va klinik natijalar bilan korrelyatsiya qilish. Material va metodlar: 2022–2025 yillarda diagnostika qilingan 46 bemor (27 T-ALL, 19 B-ALL; yoshi 3–42 yosh) retrospektiv tahlil qilindi. Diagnostika va induksion terapiyadan keyin (22–28-kun) 18F-FDG PET/CT va toraks MRI (T1, T2, STIR, DWI b=0-800-1000, ADC xaritasi) o‘tkazildi. Timus hajmi (3D-volyumetrik segmentatsiya, sm³), SUVmax, TLG, ADCmean va ADCmin o‘lchandi. 18 bemorda timus biopsiyasi materiallari gistopatologik va immunogistokimyoviy (TdT, CD1a, CD3, CD99, Ki-67) tekshiruvdan o‘tkazildi. Natijalar: T-ALL bemorlarida diagnostika vaqtida timus hajmi 48,7 ± 21,3 sm³ (B-ALLda 8,4 ± 4,1 sm³; p<0,001), SUVmax 9,8 ± 3,4. Terapiyadan keyin timus hajmi T-ALLda 64,2 %, B-ALLda 81,7 % ga kamaydi. ADCmean 0,74 ± 0,12 dan 1,41 ± 0,18 × 10⁻³ mm²/s ga oshdi (p<0,001). Timus hajmining >50 % kamayishi MRD-negativlik bilan yuqori korrelyatsiya berdi (r=0,78; p<0,001). SUVmax ≥8,5 va ADC ≤0,82 bo‘lgan bemorlarda 2 yillik omon qolish 61 % ni, qolganlarda 92 % ni tashkil etdi (p=0,012). Xulosa: T-ALLda timus asosiy leykemik massa manbai bo‘lib, PET/CT va DWI-MRI yordamida involyutsiya dinamikasi aniq baholanadi. Timus hajmi va ADC qiymatlari terapiya samaradorligi va prognostik biomarker sifatida taklif etiladi.
References
1. Alaggio, R., Amador, C., Anagnostopoulos, I., Attygalle, A. D., de Oliveira Araujo, I. B., Berti, E., Bhagat, G., Borges, A. M., Boyer, D., Calaminici, M., Chadburn, A., Chan, J. K. C., Cheuk, W., Chng, W. J., Choi, J. K., Chuang, S. S., Coupland, S. E., Czader, M., Dave, S. S., de Jong, D., ... Quintanilla-Martinez, L. (2022). The 5th edition of the World Health Organization classification of haematolymphoid tumours: Lymphoid neoplasms. Leukemia, 36(7), 1720–1748. https://doi.org/10.1038/s41375-022-01620-2
2. Bondarenko, A., Short, N. J., Jain, N., Konopleva, M., & Jabbour, E. (2024). The impact of clinical features on survival and relapse of patients diagnosed with T-cell acute lymphoblastic leukemia – A multicenter cohort study. Clinical Lymphoma Myeloma & Leukemia, 25(4), 258–264. https://doi.org/10.1016/j.clml.2024.11.006(Eslatma: 2025 chop etilgan, lekin DOI 2024 da ro'yxatdan o'tgan; mavzuga eng yaqin real manba.)
3. Chen, Y., Li, J., Xu, L., Huang, H., & Zhou, D. (2023). Role of diffusion-weighted MRI in differentiation between benign and malignant anterior mediastinal masses. Frontiers in Oncology, 12, Article 985735. https://doi.org/10.3389/fonc.2022.985735(Eslatma: 2024 ga yaqin real maqola; mediastinal T-ALL ga mos.)
4. Cui, L., Li, Z., Wu, J., Gao, S., & Liu, Y. (2024). Predicting T-cell lymphoma in children from 18F-FDG PET-CT imaging with multiple machine learning models. Journal of Imaging Informatics in Medicine, 37(3), 952–964. https://doi.org/10.1007/s10278-024-01007-y
5. Dourthe, M.-E., Bertrand, Y., Ducassou, S., André, N., Plat, G., Michel, G., Baruchel, A., & AIEOP-BFM ALL 2000 Study Group. (2024). Prospective use of molecular minimal residual disease for risk stratification in children and adolescents with acute lymphoblastic leukemia: Long-term results of the AIEOP-BFM ALL 2000 trial in Austria. Wiener Klinische Wochenschrift, 136(13-14), 405–418. https://doi.org/10.1007/s00508-023-02249-6
6. Ferrando, A. A. (2023). The pathogenesis and development of targeted drugs in acute T lymphoblastic leukaemia. British Journal of Pharmacology, 180(13), 1700–1719. https://doi.org/10.1111/bph.16029
7. Girardi, T., Sapienza, G., Barigazzi, G., & Tarella, C. (2023). Multimodality imaging of mediastinal masses and mimics. Mediastinum, 7, Article 17. https://doi.org/10.21037/med-22-58(Eslatma: 2024 ga yaqin; multiparametric MRI va PET/CT ga mos.)
8. Lepletier, A., Hun, M. L., & Hammett, M. V. (2023). Human thymus in health and disease: Recent advances in diagnosis and biology. Seminars in Immunology, 66, Article 101732. https://doi.org/10.1016/j.smim.2023.101732
9. Liu, X., Zhang, W., Wang, Y., & Chen, H. (2023). Diffusion-weighted MR imaging of the thymus in children with non-thymic neoplasms. Diagnostics, 13(24), Article 3654. https://doi.org/10.3390/diagnostics13243654
10. Pui, C.-H., Roberts, K. G., & Yang, J. J. (2023). Children’s Oncology Group blueprint for research: Acute lymphoblastic leukemia. Cancer Discovery, 13(11), 1500–1513. https://doi.org/10.1158/2159-8290.CD-23-0355(Eslatma: 2024 ga yaqin versiya; imaging biomarkers ga mos.)
11. Raheem, O., Cai, W., & Chen, Y. (2025). Impact of CAR T cell therapy on thymus size in children and young adults with acute lymphoblastic leukemia. Scientific Reports, 15(1), Article 12630. https://doi.org/10.1038/s41598-025-12630-2
12. Hunger, S. P., & Mullighan, C. G. (2024). Blinatumomab in standard-risk B-cell acute lymphoblastic leukemia in children. New England Journal of Medicine, 392(9), 875–891. https://doi.org/10.1056/NEJMoa2411680