

DEVELOPMENT OF EDUCATION AND SCIENCE IN THE ERA OF DIGITAL TRANSFORMATION

Volume 01, Issue 01, 2025

TRANSLATION-INVARIANT GROUND STATES FOR THE CHUI-WEEKS MODEL WITH FOUR SPIN STATES ON A CAYLEY TREE OF ORDER TWO

Hakimova Muslimaxon Akbarjon qizi

Student of the Physics and Mathematics Faculty of NamSU

Email: hakimovamuslimaxon@gmail.com

Abstract: In this work, the four-state Chui-Weeks model on the second-order Cayley tree is considered. For this model, all translation-invariant ground states are described.

Key words: Cayley tree, Chui-Weeks model, ground state, translation-invariant ground state.

In the present work, the four-state Chui-Weeks model is considered on a second-order Cayley tree for the first time and for this model, all translation-invariant ground states are described. The three-state Chui-Weeks model on Cayley trees was studied in [1-3].

 Γ^k The Cayley (see, [4]) of tree e.g., infinite tree, order k > 1is i.e., a graph without an cycles, from each vertex of which exactly edges issue. Let k+1 $\Gamma^k = (V, L, i)$, where V is the set of vertices of Γ^k , L is the set of edges of Γ^k and i is incidence function associating each edge the $l\epsilon L$ with its $i(l) = \{x, y\},\$ endpoints $x, y \in V$. If then and χ yare called nearest neighboring vertices, and we write $l = \langle x, y \rangle$.

We consider the model where the spin takes values in the set $\Phi = \{0, 1, 2, 3\}.$ configuration $A \subseteq V$ For spin a defined function is A as a σ_{A} $x \in A \to \sigma_A(x) \in \Phi$; all configurations coincides with the set of $\Omega_A = \Phi^A$. Denote $\Omega = \Omega_V$ and $\sigma = \sigma_V$.

DEVELOPMENT OF EDUCATION AND SCIENCE IN THE ERA OF DIGITAL TRANSFORMATION

Volume 01, Issue 01, 2025

FRANCE

Definition 1. A configuration that is invariant with respect to all shifts is called translation-invariant.

The Chui-Weeks model (see [1]) is defined by the following Hamiltonian

$$H(\sigma) = J \sum_{\langle x, y \rangle \in L} |\sigma(x) - \sigma(y)| + \alpha \sum_{x \in V} \delta_{\sigma(x), 0}, \tag{1}$$

where I, $\alpha \in R$, α is an external field and $\sigma \in \Omega$.

Remark 1. Recall that model (1) coincides with the SOS model under the condition $\alpha = 0$ (see, e.g., [4]).

Let M be the set of all unit balls with vertices in V and $S_1(x)$ be the set of all nearest neighboring vertices of $x \in V$.

We call the restriction of a configuration to the ball $b \in M$ a bounded configuration σ_b . The energy of configuration σ_b on b is defined by the formula

$$U(\sigma_b) = \frac{J}{2} \sum_{x \in S_1(c_b)} |\sigma(x) - \sigma(c_b)| + \frac{\alpha}{k+2} \sum_{x \in b} \delta_{\sigma(x),0}.$$

where $J = (J, \alpha) \in \mathbb{R}^2$ and c_b is the center of the unit ball b.

The Hamiltonian (1) can be written as

$$H(\sigma) = \sum_{b \in M} U(\sigma_b).$$

Now we study translation-invariant ground states for the four-state Chui-Weeks model on the Cayley tree of order two.

We have the following lemma.

Lemma 1. Let k=2. Then for each configuration φ_b , we have the following

$$U(\varphi_b) \in \{U_i : i = 1, 2, \dots, 29\},\$$

DEVELOPMENT OF EDUCATION AND SCIENCE IN THE ERA OF DIGITAL TRANSFORMATION

Volume 01, Issue 01, 2025

FRANCE

where

$$\begin{split} U_1 &= 0; \ U_2 = \alpha; \ U_3 = \frac{J}{2}; \ U_4 = \frac{J}{2} + \frac{\alpha}{4}; \ U_5 = \frac{J}{2} + \frac{3\alpha}{4}; U_6 = J; \ U_7 = J + \frac{\alpha}{4}; \\ U_8 &= J + \frac{\alpha}{2}; \ U_9 = J + \frac{3\alpha}{4}; \ U_{10} = \frac{3J}{2}; \ U_{11} = \frac{3J}{2} + \frac{\alpha}{4}; \ U_{12} = \frac{3J}{2} + \frac{\alpha}{2}; \\ U_{13} &= \frac{3J}{2} + \frac{3\alpha}{4}; \ U_{14} = 2J; \ U_{15} = 2J + \frac{\alpha}{4}; \ U_{16} = 2J + \frac{\alpha}{2}; \ U_{17} = \frac{5J}{2}; \\ U_{18} &= \frac{5J}{2} + \frac{\alpha}{4}; \ U_{19} = \frac{5J}{2} + \frac{\alpha}{2}; \ U_{20} = 3J; \ U_{21} = 3J + \frac{\alpha}{4}; \ U_{22} = 3J + \frac{\alpha}{2}; \\ U_{23} &= 3J + \frac{3\alpha}{4}; \ U_{24} = \frac{7J}{2} + \frac{\alpha}{4}; \ U_{25} = \frac{7J}{2} + \frac{\alpha}{2}; \ U_{26} = 4J + \frac{\alpha}{4}; \ U_{27} = 4J + \frac{\alpha}{2}; \\ U_{28} &= \frac{9J}{2} + \frac{\alpha}{4}; \ U_{28} = \frac{9J}{2} + \frac{3\alpha}{4}. \end{split}$$

Definition 2. A configuration φ is called a ground state for the Hamiltonian (1), if

$$U(\varphi_h) = min\{U_i: i = 1, 2, ..., 29\}$$

for any $b \in M$.

We denote

$$A_{\xi} = \{(J, \alpha) \in R^2 : U_{\xi} = \min\{U_i : i = 1, 2, ..., 29\}\}.$$

Calculations show that:

$$\begin{split} A_1 &= \{(J,\alpha) \in R^2 : J \geq 0, \alpha \geq 0\}; A_2 = \{(J,\alpha) \in R^2 : 18J \geq \alpha, \alpha \leq 0\}; \\ A_3 &= A_6 = A_{10} = A_{14} = A_{17} = \{(J,\alpha) \in R^2 : J = 0, \alpha \geq 0\}; \\ A_4 &= A_5 = A_7 = A_8 = A_9 = A_{11} = A_{12} = A_{13} = A_{15} = A_{16} = A_{18} = A_{19} = A_{21} = A_{22} = \ldots = A_{27} = \{(J,\alpha) \in R^2 : J = 0, \alpha = 0\}; \\ A_{20} &= \{(J,\alpha) \in R^2 : -\alpha \leq 6J \leq 0\}; A_{28} = \{(J,\alpha) \in R^2 : 0 \leq \alpha \leq -6J\}; \end{split}$$

$$A_{29} = \{(I, \alpha) \in \mathbb{R}^2 : 18I \le \alpha \le 0\};$$

and $\bigcup_{i=1}^{29} A_i = R^2$.

WORLD CONFERENCES

DEVELOPMENT OF EDUCATION AND SCIENCE IN THE ERA OF DIGITAL TRANSFORMATION

Volume 01, Issue 01, 2025

FRANCE

The following theorem describes all translation-invariant ground states for the four-state Chui-Weeks model on the Cayley tree of order two.

- **Theorem 1.** Let k=2. Then, for the four-state Chui-Weeks model, the following assertions hold:
- (i) The configurations $\sigma(x) = i, i \in \{1,2,3\}$, for for all $x \in V$ are translation-invariant ground states iff $(J, \alpha) \in A_1$;
- (ii) The configuration $\sigma(x) = 0$ for all $x \in V$ is the translation-invariant ground state iff $(J, \alpha) \in A_2$;
 - (iii) If $(J, \alpha) \in \mathbb{R}^2 \setminus (A_1 \cup A_2)$, then there is no translation-invariant ground state. **Proof.** Let k = 2.
- (i) We consider the configuration $\sigma(x) = i, i \in \{1, 2, 3\}$, for all $x \in V$. For any $b \in M$ by Lemma we have $U(\sigma_b) = U_1 = 0$. Thus the configuration $\sigma(x) = i, i \in \{1, 2, 3\}$, for all $x \in V$ is ground state iff $(J, \alpha) \in A_1$;
- (ii) We consider the configuration $\sigma(x)=0$ for all $x \in V$. For any $b \in M$ by Lemma we have $U(\sigma_b)=U_2=\alpha$. Thus the configuration $\sigma(x)=0$ for all $x \in V$ is ground state iff $(J,\alpha) \in A_2$:
 - (iii) It is obvious. The theorem is proved.

LITERATURE

- 1. Rahmatullaev M. M., Rasulova M. A., Hakimova M. A. Periodic ground states for the Chui-Weeks model on the Cayley tree of order two // Acta NUUz: Exact sciences. 2024. No. 2/2.1. P. 104–110.
- 2. Rahmatullaev M. M., Rasulova M. A., Hakimova M. A. On periodic ground states for the Chui-Weeks model // Acta NUUz, Exact sciences, 2025, №2/2, 2025, pp. 105–110.
- 3. Rasulova M. A., Hakimova M. A. Periodic Ground States for the Chui-Weeks Model on the Cayley Tree of Order Three // Letters in Mathematical Physics. 2025 (accepted).
- 4. Rozikov U. A. Gibbs measures on Cayley trees. Singapore: World Scientific, 2013.